| N3   | 0.0837 (8) | 0.4111 (6) | 0.4459 (6) | 3.0 (3) |
|------|------------|------------|------------|---------|
| 01   | 0.0929 (6) | 0.4130 (5) | 0.6880(5)  | 3.4 (3) |
| OW . | 0.0736 (9) | 0.1868 (9) | 0.3648 (9) | 8.2 (5) |

Table 2. Bond distances (Å) and angles (°)

| C11-C12           | 1.43 (3) | C31-C32     | 1.35 (3) |
|-------------------|----------|-------------|----------|
| C12C13            | 1.36 (3) | C32-C33     | 1.38 (3) |
| C13-C14           | 1.39 (3) | C33-C34     | 1.39 (3) |
| C14-C15           | 1.43 (3) | C34—C35     | 1.39 (3) |
| C15-C16           | 1.32 (3) | C35-C36     | 1.39 (3) |
| C11-C16           | 1.30 (3) | C31-C36     | 1.33 (3) |
| C1C13             | 1.49 (3) | C3–C33      | 1.58 (3) |
| N1C14             | 1.44 (3) | N3-C34      | 1.45 (3) |
| C11-Br1           | 1.92 (2) | C31-Br3     | 1.93 (3) |
| C21-C22           | 1.39 (3) | C1-N3       | 1.47 (3) |
| C22-C23           | 1.41 (3) | C101        | 1.44 (3) |
| $C_{23} - C_{24}$ | 135 (3)  | 01 - C4     | 146(3)   |
| C24-C25           | 145 (3)  | C4-C5       | 1.10(3)  |
| C25_C26           | 1 36 (3) | $C^2 - N^1$ | 1.45 (3) |
| $C_{21} - C_{26}$ | 135 (3)  | C2N3        | 1.15(3)  |
| $C_{2}-C_{23}$    | 1.53 (3) | C3-N1       | 1.45(3)  |
| N2-C24            | 1.00(3)  | C3-N2       | 1.43(3)  |
| C21-Br2           | 1.95 (2) | 05 112      | 1.45 (5) |
| Br1-C11-C16       | 119 (2)  | C31-C36-C35 | 119 (2)  |
| Br1-C11-C12       | 118(1)   | C32-C31-C36 | 125 (2)  |
| Br2-C21-C22       | 116 (2)  | C32-C33-C3  | 121 (2)  |
| Br2-C21-C26       | 119 (2)  | C33-C32-C31 | 118 (2)  |
| Br3-C31-C32       | 118 (2)  | C33-C34-N3  | 120 (2)  |
| Br3-C31-C36       | 117 (2)  | C34-C33-C32 | 120 (2)  |
| C11-C16-C15       | 121 (2)  | C34-N3-C2   | 112 (2)  |
| C12-C13-C1        | 119 (2)  | C34-N3-C1   | 112 (2)  |
| C12-C11-C16       | 123 (2)  | C35-C34-C33 | 119 (2)  |
| C13-C14-N1        | 121 (2)  | C35-C34-N3  | 120 (2)  |
| C13-C1-O1         | 110 (2)  | C36-C35-C34 | 119 (2)  |
| C13-C12-C11       | 117 (2)  | C1-C13-C14  | 120 (2)  |
| C14-N1-C2         | 111 (2)  | C1-01-C4    | 114 (2)  |
| C14-C13-C12       | 121 (2)  | C2-C23-C24  | 121 (2)  |
| C15-C14-C13       | 118 (2)  | C2-C23-C22  | 117 (2)  |
| C15-C14-N1        | 120 (2)  | C2-N3-C1    | 108 (1)  |
| C16-C15-C14       | 120 (2)  | C3-C33-C34  | 119 (2)  |
| C21-C26-C25       | 120 (3)  | C3-N1-C2    | 107 (2)  |
| C22-C21-C26       | 125 (2)  | C3-N1-C14   | 116(2)   |
| C23-C22-C21       | 115 (2)  | N1-C2-C23   | 109 (2)  |
| C23-C2-N3         | 113 (2)  | N1-C2-N3    | 111 (2)  |
| C23-C24-N2        | 120 (2)  | N1-C3-C33   | 111 (2)  |
| C24—C23—C22       | 121 (2)  | N2-C3-N1    | 110 (2)  |
| C24-N2-C3         | 113 (2)  | N2-C3-C33   | 112 (2)  |
| C25-C24-C23       | 121 (2)  | N2-C24-C25  | 119 (2)  |
| C26-C25-C24       | 117 (2)  | N3-C1-C13   | 113 (2)  |
| 01-C4-C5          | 107 (2)  | N3-C1-O1    | 109 (2)  |

Programs used were *SHELX*76 (Sheldrick, 1976) and *ORTEPII* (Johnson, 1976).

The financial support to IHS was provided by KOSEF through the Science Research Center of Excellence program.

### References

© 1994 International Union of Crystallography Printed in Great Britain all rights reserved

- Hawkinson, S. W. & Fleischer, E. B. (1969). Inorg. Chem. 11, 2402-2410.
- Jircitano, A. J., Sheldon, R. I. & Mertes, K. B. (1983). J. Am. Chem. Soc. 105, 3022-3027.
- Johnson, C. K. (1976). ORTEP11. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- McGeachin, S. G. (1966). Can. J. Chem. 44, 2323-2328.
- Owston, P. G. & Shaw, L. S. (1988). Acta Cryst. B44, 39-50.
- Owston, P. G., Shaw, L. S. & Tasker, P. A. (1982). J. Chem. Soc. Chem. Commun. pp. 17-19.
- Seidel, F. (1926). Ber. Dtsch. Chem. Ges. 59, 1894 1908.
- Scidel, F. & Dick, W. (1927). Ber. Dtsch. Chem. Ges. 60, 2018 2023.
- Sheldrick, G. M. (1976). SHELX76. Programs for Crystal Structure Determination. Univ. of Cambridge, England.
- Skuratowicz, J. S., Madden, I. L. & Busch, D. H. (1977). Inorg. Chem. 16, 1721-1725.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination: A Practical Guide, p. 303. New York: Macmillan.
- Taylor, L. T. & Busch, D. H. (1969). Inorg. Chem. 8, 1366-1371.

Acta Cryst. (1994). C50, 447-450

# Structure of Neostrychnine. An Enamine with a Bridgehead Nitrogen which Undergoes Efficient Chemical Reaction with Singlet Oxygen

R. L. BEDDOES, A. A. GORMAN\* AND A. L. PRESCOTT

Chemistry Department, University of Manchester, Manchester M13 9PL, England

(Received 14 May 1993; accepted 18 August 1993)

#### Abstract

Neostrychnine, 20,21-didehydro-21,22-dihydrostrychnidin-10-one,  $C_{21}H_{22}N_2O_2$ , contains an alicyclic enamine unit in which the N atom is located at a bridgehead, a fact of critical importance to an understanding of the manner in which it reacts with potential electrophiles, including singlet oxygen,  $O_2({}^{1}\Delta_g)$ . The X-ray structure shows that the steric constraints within the  $\sigma$  framework demand a high degree of pyramidalization of the N atom, which is independent of the fact that this atom is part of an enamine system. These data support the conclusion that the formation of an immonium species with a double bond at the N atom is likely to be highly unfavourable.

### Comment

The mechanism of chemical reaction of singlet oxygen,  $O_2({}^{1}\Delta_g)$ , with electron-rich double bonds,

Lists of structure factors, anisotropic displacement parameters for the Br atoms and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71452 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1063]

Albert, A. & Yamamoto, H. (1966). J. Chem. Soc. B, pp. 956–963. Bamberger, E. (1927). Ber. Disch. Chem. Ges. 60, 314–319. Fleischer, E. B. & Klem, E. (1965). Inorg. Chem. 4, 637–642.

including those of enamines, to give dioxetanes has been a subject of considerable discussion (Yamaguchi, 1985). Trapping experiments (Jefford, Kohmoto, Boukouvalas & Burger, 1983, and references therein; Saito, Nakagawa, Kuo, Obata & Matsuura, 1985, and references therein) have been interpreted as conclusive evidence for the intermediacy of zwitterionic species of type (1*a*).



The long-known molecule neostrychnine (2) (Chakravarti & Robinson, 1947), an isomer of strychnine (3) of known absolute stereochemistry (Peierdeman, 1956), provides a potential test of these claims since its very low  $pK_a$  suggests that the immonium species (1b) is energetically unfavoured, in agreement with the requirement to accommodate a bridgehead double bond (Prelog & Hafliger, 1949; Prelog, Barman & Zimmermann, 1949). Therefore, reaction with  $O_2(\Delta_e)$  via (1a) should also be unfavoured. Experiment, however, has shown that chemical reaction of (2) with  $O_2({}^1\Delta_e)$  is extremely efficient, proceeding with a rate constant typical of a standard sterically unconstrained enamine and thus providing evidence that the rate-determining step does not involve a species corresponding to (1a)(Curtis, Gorman & Prescott, 1988).

In this paper we report the structure determination of (2). This shows that the alicyclic N atom in this molecule exhibits a high degree of pyramidalization which is essentially identical to that of strychnine (3) (Glover, Gould & Walkinshaw, 1985). This implies that the hybridization of the N atom in neostrychnine (2) is a consequence of  $\sigma$ -framework constraints within the polycyclic structure as a whole, and supports the contention that an immonium species of type (1) must be highly unfavourable.

Crystalline (2) was prepared by refluxing strychnine with Raney Nickel in xylene (Chakravarti & Robinson, 1947). Fig. 1 shows a *PLUTO* (Motherwell & Clegg, 1978) drawing of the molecule together with the numbering system used. We have compared the hybridization of the aliphatic N atoms in (2) and (3) by computing (*a*) the vertical distance of each N atom from the plane of the three C atoms to which it is bonded and (b) the sum of the three bond angles centred at each N atom. The values are extremely similar [0.44 Å and 334.4° for (2) from this work, 0.44 Å and 335.0° for (3) using coordinates from Glover, Gould & Walkinshaw (1985)].



Fig. 1. *PLUTO* (Motherwell & Clegg, 1978) drawing of neostrychnine (2) showing the numbering scheme used in the tables.

### Experimental

The compound was obtained by treatment of strychnine with Raney nickel in xylene (Chakravarti & Robinson, 1947), followed by dry-column chromatography on silica gel with acetone/hexane mixtures and recrystallization twice from absolute ethanol; m.p. 500-502.5 K (Prescott, 1990).

# Crystal data

| $C_{21}H_{22}N_2O_2$            | Mo $K\alpha$ radiation            |
|---------------------------------|-----------------------------------|
| $M_r = 334.42$                  | λ = 0.71069 Å                     |
| Orthorhombic                    | Cell parameters from 47           |
| $P2_{1}2_{1}2_{1}$              | reflections                       |
| a = 7.974 (4) Å                 | $\theta = 6.3 - 11.9^{\circ}$     |
| b = 11.960 (4) Å                | $\mu = 0.085 \text{ mm}^{-1}$     |
| c = 16.482 (8) Å                | <i>T</i> = 294 K                  |
| V = 1572 (2) Å <sup>3</sup>     | Tabular                           |
| Z = 4                           | $0.4 \times 0.4 \times 0.18$ mm   |
| $D_x = 1.413 \text{ Mg m}^{-3}$ | Colourless                        |
| Data collection                 |                                   |
| Nicolet diffractometer          | $\theta_{\rm max} = 27.5^{\circ}$ |
| $\omega/2\theta$ scans          | $h = 0 \rightarrow 7$             |
| Absorption correction:          | $k = 0 \rightarrow 10$            |
| none                            | $l = -17 \rightarrow 17$          |
| 2578 measured reflections       | 3 standard reflections            |
| 2201 independent reflections    | monitored every 200               |
| 1458 observed reflections       | reflections                       |
| $[I > 2\sigma(I)]$              | intensity variation: none         |
| $R_{\rm int} = 0.06$            | -                                 |

#### Refinement

| Refinement on F               | $w = 4F_{c}^{2}/\sigma^{2}(F_{c}^{2})$                     |
|-------------------------------|------------------------------------------------------------|
| R = 0.068                     | $(\Delta/\sigma)_{\rm max} < 0.01$                         |
| wR = 0.044                    | $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 1.787                     | $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 1458 reflections              | Atomic scattering factors                                  |
| 226 parameters                | from Cromer & Waber                                        |
| H-atom parameters not refined | (1974)                                                     |

| Table | 1. Fractional | atomic  | coordinates  | and   | equival        | ent |
|-------|---------------|---------|--------------|-------|----------------|-----|
|       | isotropic di  | splacem | ent paramete | rs (Å | <sup>2</sup> ) |     |

### $B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_j.\mathbf{a}_j.$

|     | x          | y           | z          | Bea     |
|-----|------------|-------------|------------|---------|
| Cl  | 0.335(1)   | 0.3811 (6)  | 0.3905 (4) | 3.0 (4) |
| C2  | 0.216(1)   | 0.3998 (6)  | 0.4501 (4) | 3.9 (5) |
| C3  | 0.091 (1)  | 0.3260 (8)  | 0.4657 (4) | 3.6 (5) |
| C4  | 0.076(1)   | 0.2263 (6)  | 0.4209 (4) | 3.6 (5) |
| C5  | 0.194 (1)  | 0.2095 (6)  | 0.3619 (4) | 2.9 (5) |
| C6  | 0.321 (1)  | 0.2847 (6)  | 0.3446 (4) | 2.5 (4) |
| C7  | 0.4328 (9) | 0.2400 (5)  | 0.2778 (4) | 2.3 (4) |
| C8  | 0.3232 (8) | 0.1478 (5)  | 0.2408 (4) | 2.4 (4) |
| N9  | 0.2049(7)  | 0.1162 (5)  | 0.3068 (3) | 2.8 (3) |
| C10 | 0.075 (1)  | 0.0442 (6)  | 0.2895 (4) | 3.2 (5) |
| C11 | 0.090(1)   | -0.0089 (5) | 0.2056 (4) | 3.3 (4) |
| C12 | 0.132(1)   | 0.0714 (6)  | 0.1369 (4) | 3.1 (4) |
| C13 | 0.2135 (8) | 0.1806 (5)  | 0.1680 (4) | 2.4 (4) |
| C14 | 0.304 (1)  | 0.2530 (6)  | 0.1054 (4) | 2.7 (4) |
| C15 | 0.368 (1)  | 0.3567 (5)  | 0.1501 (4) | 2.6 (4) |
| C16 | 0.497 (1)  | 0.3227 (6)  | 0.2135 (4) | 2.8 (4) |
| C17 | 0.600(1)   | 0.1964 (6)  | 0.3118 (4) | 3.1 (4) |
| C18 | 0.7245 (8) | 0.2025 (6)  | 0.2406 (4) | 3.3 (4) |
| N19 | 0.6401 (8) | 0.2656 (5)  | 0.1751 (3) | 2.9 (3) |
| C20 | 0.599(1)   | 0.1982 (6)  | 0.1064 (4) | 3.1 (5) |
| C21 | 0.453 (1)  | 0.1928 (6)  | 0.0701 (4) | 2.7 (4) |
| C22 | 0.423 (1)  | 0.1196 (7)  | -0.0036(4) | 3.6 (4) |
| C23 | 0.260(1)   | 0.0548 (6)  | 0.0044 (5) | 4.4 (5) |
| O24 | 0.2415 (6) | 0.0080 (4)  | 0.0846 (3) | 3.6 (3) |
| O25 | -0.0379(6) | 0.0256 (4)  | 0.3361 (3) | 4.2 (3) |

#### Table 2. Selected geometric parameters (Å, °)

| C1-C2    | 1.385 (9) | C11-C12     | 1.525 (8) |
|----------|-----------|-------------|-----------|
| C1C6     | 1.384 (8) | C12-C13     | 1.545 (8) |
| C2-C3    | 1.36(1)   | C12-024     | 1.441 (7) |
| C3C4     | 1.408 (9) | C13-C14     | 1.530 (8) |
| C4C5     | 1.369 (9) | C14—C15     | 1.529 (8) |
| C5-C6    | 1.383 (9) | C14-C21     | 1.506 (9) |
| C5-N9    | 1.441 (8) | C15-C16     | 1.521 (9) |
| C6C7     | 1.515 (8) | C16-N19     | 1.474 (8) |
| C7-C8    | 1.533 (8) | C17—C18     | 1.540 (9) |
| C7-C16   | 1.537 (8) | C18N19      | 1.479 (8) |
| C7-C17   | 1.538 (9) | N19-C20     | 1.427 (8) |
| C8-N9    | 1.489 (7) | C20-C21     | 1.311 (9) |
| C8-C13   | 1.536 (8) | C21-C22     | 1.517 (9) |
| N9C10    | 1.375 (8) | C22—C23     | 1.51(1)   |
| C10-C11  | 1.525 (8) | C23—O24     | 1.444 (8) |
| C10-O25  | 1.206 (8) |             |           |
| C2C1C6   | 117.8 (7) | C11-C12-C13 | 112.3 (6) |
| C1C2C3   | 122.3 (7) | C11-C12-O24 | 104.3 (6) |
| C2C3C4   | 120.9 (7) | C13-C12-O24 | 112.9 (6) |
| C3C4C5   | 116.0 (7) | C8-C13-C12  | 106.5 (5) |
| C4-C5-C6 | 123.7 (7) | C8-C13-C14  | 113.6 (6) |
| C4C5N9   | 127.1 (7) | C12-C13-C14 | 117.0 (6) |
| C6-C5-N9 | 109.2 (7) | C13-C14-C15 | 107.0 (5) |
| C1-C6-C5 | 119.3 (7) | C13-C14-C21 | 111.3 (6) |
| C1-C6-C7 | 130.0(7)  | C15-C14-C21 | 108.2 (6) |
| C5-C6-C7 | 110.6 (6) | C14-C15-C16 | 109.8 (6) |
| C6-C7-C8 | 101.9 (6) | C7-C16-C15  | 114.9 (6) |
| C6C7C16  | 118.1 (6) | C7-C16-N19  | 104.8 (6) |

| C6-C7-C17   | 111.5 (6) | C15-C16-N19 | 110.6 (5) |
|-------------|-----------|-------------|-----------|
| C8-C7-C16   | 112.2 (5) | C7-C17-C18  | 105.3 (5) |
| C8-C7-C17   | 113.2 (6) | C17-C18-N19 | 106.7 (6) |
| C16-C7-C17  | 100.4 (6) | C16-N19-C18 | 105.9 (5) |
| C7-C8-N9    | 104.7 (5) | C16-N19-C20 | 115.3 (6) |
| C7-C8-C13   | 116.9 (6) | C18-N19-C20 | 113.2 (6) |
| N9-C8-C13   | 105.9 (5) | N19-C20-C21 | 126.3 (7) |
| C5-N9-C8    | 107.6 (5) | C14-C21-C20 | 120.1 (7) |
| C5-N9-C10   | 124.7 (6) | C14-C21-C22 | 117.4 (6) |
| C8-N9-C10   | 119.0 (6) | C20-C21-C22 | 122.4 (7) |
| N9-C10-C11  | 113.1 (7) | C21-C22-C23 | 111.2 (6) |
| N9-C10-O25  | 123.1 (7) | C22-C23-O24 | 111.6 (7) |
| C11-C10-O25 | 123.7 (8) | C12-024-C23 | 114.0 (5) |
| C10-C11-C12 | 115.3 (6) |             |           |
|             |           |             |           |

The known handedness was chosen for the absolute structure. Refinement of the enantiomer using anomalous-dispersion coefficients gave only a slightly higher agreement factor: 0.0683 compared with 0.0682. Anomalous-dispersion effects were included in  $F_c$  (Ibers & Hamilton, 1964). H atoms were included at calculated positions (C—H = 0.95 Å) and not refined. Computer programs used were *DIFABS* (Walker & Stuart, 1983), *SHELX*86 (Sheldrick, 1985), *TEXSAN* (Molecular Structure Corporation, 1985) and *PLUTO* (Motherwell & Clegg, 1978).

We thank the SERC, UK, for the award of a Research Studentship to ALP.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, least-squares-planes data and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71580 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1064]

### References

- Chakravarti, R. N. & Robinson, R. (1947). J. Chem. Soc. pp. 78-80.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Curtis, N. M., Gorman, A. A. & Prescott, A. L. (1988). J. Am. Chem. Soc. 110, 7549-7550.
- Glover, S. S. B., Gould, R. O. & Walkinshaw, M. D. (1985). Acta Cryst. C41, 990-994.
- Ibers, J. A. & Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
- Jefford, C. W., Kohmoto, S., Boukouvalas, J. & Burger, U. (1983), J. Am. Chem. Soc. 105, 6498-6499.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO. Program for Plotting Molecular and Crystal Structures.* Univ. of Cambridge, England.
- Peierdeman, A. F. (1956). Acta Cryst. 9, 824.
- Prelog, V., Barman, P. & Zimmermann, M. (1949). Helv. Chim. Acta, 32, 1284–1296.
- Prelog, V. & Hafliger, O. (1949). Helv. Chim. Acta, 32, 1851-1855.
- Prescott, A. L. (1990). PhD thesis, Univ. of Manchester, England.
- Saito, I., Nakagawa, H., Kuo, Y.-H., Obata, K. & Matsuura, T. (1985). J. Am. Chem. Soc. 107, 5279-5280.
- Sheldrick, G. M. (1985). SHELX86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford Univ. Press.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 159–166.
Yamaguchi, K. (1985). Singlet O<sub>2</sub>, Vol. 3, edited by A. A. Frimer, pp. 119–251. Boca Raton: CRC Press.

Compound (2) was prepared from 1,2,3,4-tetrahydrocarbazole-1-one and ethanedithiol using  $ZnCl_2$ as a catalyst (Patır & Götz, 1993). Perspective views of compounds (1) and (2) are shown in Fig. 1 and the crystal packings are presented in Fig. 2.

Acta Cryst. (1994). C50, 450-453

Structural Investigations of 1,2,3,4-Tetrahydrocarbazole Derivatives. I. 2,3-Dihydro-9-(phenylsulfonyl)carbazole-4(1*H*)-one and 1,2,3,4-Tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane

**TUNCER HÖKELEK\*** 

Hacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey

SÜLEYMAN PATIR, AHMET GÜLCE AND GÜROL OKAY

Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey

(Received 15 February 1993; accepted 12 July 1993)

# Abstract

Rings A and B of the title compounds,  $C_{18}H_{15}NO_3S$ (1) and  $C_{14}H_{15}NS_2$  (2), are planar while the hydrogenated C rings are not. The rings in the tetrahydrocarbazole skeleton are twisted with respect to each other.

# Comment

The title compounds have tricyclic ring systems with the rings named as A, B and C as in the strychnos type of indol alkaloids (Bosch & Bonjoch, 1988). Synthesis of these compounds is currently being studied using the title compounds as starting materials (Götz, Bats & Fritz, 1986; Pattr & Fritz, 1990). When positions 2 or 3 of the title compounds were substituted by appropriate substituents, synthesis of the dasycarbidone skeleton was accomplished (Magnus, Sear, Kim & Vicker, 1992). The possibility of synthesizing the indol type of alkaloids by substitution at either position 1 or other positions is currently under investigation (Pattr & Götz, 1993).

Compound (1) was prepared from tetrabutylammonium hydrogensulfate, benzoylsulfonyl chloride and 1,2,3,4-tetrahydrocarbazole-4-one by the method of Volker (1979) (see also Patir, 1991).

© 1994 International Union of Crystallography Printed in Great Britain - all rights reserved



Fig. 1. SNOOP1 (Davies, 1983) drawings of (a) compound (1) and (b) compound (2) with the atom-numbering schemes. The thermal ellipsoids are drawn at the 50% probability level.

Acta Crystallographica Section C ISSN 0108-2701 ©1994